KOTITI

TEST REPORT

KOTITI No. 8220-1403-101150

Applicant Piezoelectric Technology Co., Ltd.

Date In

2020. 08. 13.

Date Out

2020. 11. 18.

Product Name	Auto Focus Module
Model Name	PT-AF06-M12
Part Name	N/S
Testing Period	2020. 08. 13. ~ 2020. 11. 18.
Test Result	For further details, please refer to the following page(s).

Name : Ki woong Oh Name : Hae sung Kim	Affirmation	Prepared by	,		Technical	Man	ager	
	Amirmation	Name :	Ki woong Oh	2018	Name	:	Hae sung Kim	havesing

KOTITI Testing & Research Institute

	Screening Test (Upit : mg/kg)				Procision Analysis (Unit, ma/ka)							
No.		Scree	ening re	St (Unit : I	mg/kg) Spot			Precisi	on Anai	ysis (Unit	: mg/kg)	
	Pb	Cd	Hg	Cr	test	Br	Pb	Cd	Hg	Cr⁰⁺	PBBs	PBDEs
1	N.D.	N.D.	N.D.	N.D.	N.A.	N.D.	-	-	-	-	-	-
2	N.D.	N.D.	N.D.	2 130	Negative	N.A.	-	-	-	-	-	-
3	N.D.	N.D.	N.D.	N.D.	N.A.	N.D.	-	-	-	-	-	-
4	N.D.	N.D.	N.D.	N.D.	N.A.	N.D.	-	-	-	-	-	-
5	N.D.	N.D.	N.D.	183 269	Negative	N.A.	-	-	-	-	-	-
6-1	N.D.	N.D.	N.D.	N.D.	Negative	N.A.	-	-	-	-	-	-
6-2	N.D.	N.D.	N.D.	N.D.	Negative	N.A.	-	-	-	-	-	-
6-3	N.D.	N.D.	N.D.	N.D.	Negative	N.A.	-	-	-	-	-	-
6-4	N.D.	N.D.	N.D.	N.D.	N.A.	N.D.	-	-	-	-	-	-
6-5	N.D.	N.D.	N.D.	N.D.	N.A.	N.D.	-	-	-	-	-	-
7	458	N.D.	N.D.	N.D.	N.A.	N.D.	-	-	-	-	-	-
8-1	N.D.	N.D.	N.D.	N.D.	N.A.	N.D.	-	-	-	-	-	-
8-2	N.D.	121	666	105	Negative	N.A.	-	N.D.	N.D.	-	-	-
8-3	N.D.	N.D.	N.D.	N.D.	Negative	N.A.	-	-	-	-	-	-
9-1	N.D.	N.D.	N.D.	N.D.	N.A.	N.D.	-	-	-	-	-	-
9-2	N.D.	86	369	135	Negative	N.A.	-	N.D.	-	-	-	-
10	N.D.	N.D.	N.D.	N.D.	N.A.	13 298	-	-	-	-	N.D.	N.D.
11	N.D.	N.D.	79	N.D.	N.A.	N.D.	-	-	-	-	-	-
12	N.D.	2 522	N.D.	10 811	Negative	N.A.	-	N.D.	-	-	-	-
13-1	N.D.	N.D.	N.D.	N.D.	Negative	N.A.	-	-	-	-	-	-
13-2	N.D.	N.D.	N.D.	N.D.	Negative	N.A.	-	-	-	-	-	-

Restriction of Hazardous Substances Directive (RoHS/2011/65/EU, 2015/863/EU), Unit : mg/kg

Comments

KOTIT

1. Screening Methodology

¹⁾ Screening Limit

-	Judgement						
Element	Polymer	Metal	Mixture				
	X < 50 (BL)	X < 50 (BL)	X < 50 (BL)				
Cd	50 < X < 170 (UD)	50 < X < 170 (UD)	50 < X < 170 (UD)				
	170 < X (OL)	170 < X (OL)	170 < X (OL)				
	X < 500 (BL)	X < 500 (BL)	X < 500 (BL)				
Pb	500 < X < 1 500 (UD)	500 < X < 1 500 (UD)	500 < X < 1 500 (UD)				
	1500 < X (OL)	1500 < X (OL)	1500 < X (OL)				
Hg	X < 500 (BL)	X < 500 (BL)	X < 500 (BL)				
Cr	X < 500 (BL)	X < 500 (BL)	X < 500 (BL)				
	500 < X (UD)	500 < X (UD)	500 < X (UD)				
Br	X < 500 (BL)		X < 500 (BL)				
	500 < X (UD)	-	500 < X (UD)				

※ BL = Below Limit, UD = Undecidable, OL = Over Limit

* If " OL " or " UD " is determined, it is necessary to conduct a precision analysis.

2. Test Methods

- 1) Reference to IEC 62321-3-1:2013 determined by ED-XRF
- 2) Reference to IEC 62321-5:2013 by acid digestion and determined by ICP-OES (Pb, Cd)
- 3) Reference to IEC 62321-4:2013 by acid digestion and determined by ICP-OES (Hg)
- 4) Reference to IEC 62321-7-2:2017 by solvent extraction and determined by UV-VIS (Cr⁶⁺)
- 5) Reference to IEC 62321-7-1:2015 by boiling water extraction and determined by UV-VIS (Cr⁶⁺)
- 6) Reference to IEC 62321-6:2015 by solvent extraction and determined by GC-MS (PBBs, PBDEs)

3. Remarks

KOTITI

- 1) Unit = mg/kg
- 2) N.D. = Not Detected [< RL(Report Limit)], N.A. = Not Applicable,
- 3) Negative : Not Detected, Positive : Detected
- 4) Reporting Limt
- (1) XRF Screening

Test Hom(s)	Reporting Limit of XRF (mg/kg)				
rest tient(s)	Polymer	Metal			
Lead (Pb)	50	100			
Cadmium (Cd)	20	50			
Mercury (Hg)	50	100			
Chromium (Cr)	30	50			
Bromine (Br)	50	-			

(2) Precision Analysis

Test Item(s)	Report Limit of Precision (mg/kg)
Lead (Pb)	5
Cadmium (Cd)	2
Mercury (Hg)	1
Hexavalent Chromium (Cr ⁶⁺)	8
Polybrominated Biphenyls (PBBs)	5
Polybrominated Diphenyl Ethers (PBDEs)	5

Photo of the submitted sample(s)

		Remarks	S = SOLDER P = PAINT M = METAL
1	AF-MIL 200500029		
2			

QPF-16-06(rev.00)

	Remarks	S = SOLDER
		P = PAINT
		M = METAL
2		

Photo of the submitted sample(s)

Photo of the submitted sample(s)

QPF-16-06(rev.00)